经典和量子动力学 第2版 英文版 W.Dittrich,M.Reuter 著 1998年版
资料介绍
经典和量子动力学 第2版 英文版
作者:W.Dittrich,M.Reuter 著
出版时间:1998年版
内容简介
This volume is the result of the authors' lectures and seminars given at Tiibingcn University and elsewhere. It represents a summary of our learning process in non-linear Hamiltonian dynamics and path integral methods in nonrelativistic quantum mechanics. While large parts of the book are based on standard material, readers will find numerous worked examples which can rarely be found in the published literature. In fact, toward the end they will find themselves in the midst of mod- em topological methods which so far have not made their way into the textbook literature.
One of the authors' (W.D.) interest in the subject was inspired by Prof. D. Judd (UC Berkeley), whose lectures on nonlinear dynamics familiarized him with Lich-tenberg and Lieberman's monograph, Regular and Stochastic Motion (Springer, 1983). For people working in plasma or accelerator physics, the chapter on non-linear physics should contain some familiar material. Another influential author has been Prof. J. Schwinger (UCLA); the knowledgeable reader will not be surprised to discover our appreciation of Schwinger's Action Principle in the introductory chapters. However, the major portion of the book is based on Feynman's path integral approach, which seems to be the proper language for handling topological aspects in quantum physics.
目 录
Introduction
1. The Action Principles in Mechanics
2. Application of the Action Principles
3. Jacobi Fields, Conjugate Points
4. Canonical Transformations
5. The Hamilton-Jacobi Equation
6. Action-Angle Variables
7. The Adiabatic Invariance of the Action Variables
8. Tune-Independent Canonical Perturbation Theory
9. Canonical Perturbation Theory with Several Degrees of Freedom
10. Canonical Adiabatic Theory
11. Removal of Resonances
12. Superconvergent Perturbation Theory, KAM Theorem (Introduction)
13. Poincare Surface of Sections, Mappings
14. The KAM Theorem
15. Fundamental Principles of Quantum Mechanics
16. Examples for Calculating Path Integrals
17. Direct Evaluation of Path Integrals
18. Linear Oscillator with Time-Dependent Frequency
19. Propagators for Particles in an External Magnetic Field
20. Simple Applications of Propagator Functions
21. The WKB Approximation
22. Partition Function for the Harmonic Oscillator
23. Introduction to Homotopy Theory
24. Classical Chem-Simons Mechanics
25. Semicalssical Quantization
26. The"Maslov Anomaly and the Morse Index Theorem
27. Maslov Anomaly and the Morse Index Theorem
28. Berry's Phase
29. Classical Analoues to Berry's Phase
30. Berry Phase and Parametric Harmonic Oscillator
31. Topological Phases in Planar Electrodynamics
References
Subject Index
作者:W.Dittrich,M.Reuter 著
出版时间:1998年版
内容简介
This volume is the result of the authors' lectures and seminars given at Tiibingcn University and elsewhere. It represents a summary of our learning process in non-linear Hamiltonian dynamics and path integral methods in nonrelativistic quantum mechanics. While large parts of the book are based on standard material, readers will find numerous worked examples which can rarely be found in the published literature. In fact, toward the end they will find themselves in the midst of mod- em topological methods which so far have not made their way into the textbook literature.
One of the authors' (W.D.) interest in the subject was inspired by Prof. D. Judd (UC Berkeley), whose lectures on nonlinear dynamics familiarized him with Lich-tenberg and Lieberman's monograph, Regular and Stochastic Motion (Springer, 1983). For people working in plasma or accelerator physics, the chapter on non-linear physics should contain some familiar material. Another influential author has been Prof. J. Schwinger (UCLA); the knowledgeable reader will not be surprised to discover our appreciation of Schwinger's Action Principle in the introductory chapters. However, the major portion of the book is based on Feynman's path integral approach, which seems to be the proper language for handling topological aspects in quantum physics.
目 录
Introduction
1. The Action Principles in Mechanics
2. Application of the Action Principles
3. Jacobi Fields, Conjugate Points
4. Canonical Transformations
5. The Hamilton-Jacobi Equation
6. Action-Angle Variables
7. The Adiabatic Invariance of the Action Variables
8. Tune-Independent Canonical Perturbation Theory
9. Canonical Perturbation Theory with Several Degrees of Freedom
10. Canonical Adiabatic Theory
11. Removal of Resonances
12. Superconvergent Perturbation Theory, KAM Theorem (Introduction)
13. Poincare Surface of Sections, Mappings
14. The KAM Theorem
15. Fundamental Principles of Quantum Mechanics
16. Examples for Calculating Path Integrals
17. Direct Evaluation of Path Integrals
18. Linear Oscillator with Time-Dependent Frequency
19. Propagators for Particles in an External Magnetic Field
20. Simple Applications of Propagator Functions
21. The WKB Approximation
22. Partition Function for the Harmonic Oscillator
23. Introduction to Homotopy Theory
24. Classical Chem-Simons Mechanics
25. Semicalssical Quantization
26. The"Maslov Anomaly and the Morse Index Theorem
27. Maslov Anomaly and the Morse Index Theorem
28. Berry's Phase
29. Classical Analoues to Berry's Phase
30. Berry Phase and Parametric Harmonic Oscillator
31. Topological Phases in Planar Electrodynamics
References
Subject Index
相关资料
- 高等统计力学导论 第二版 梁希侠 编著 2019年版
- 量子电动力学 第2版 英文版 (美)Berestetskii,V.B.等著
- 国外优秀物理著作原版系列 量子力学与经典力学之间的联系在原子、分子及电动力学系统建模中的应用 英文版 (罗)波帕(A Popa) 著 2016年版
- 量子力学、统计学、聚合物物理学和金融市场中的路径积分 第2分册 第5版 英文影印版 (德)克莱尼特 著 2015年版
- 量子力学 少年版 曹则贤 著 2017年版
- 量子关联的动力学性质 仇亮,石礼伟,寻之朋 著 2015年版
- 量子关联及其动力学性质 郭志华 著 2019年版
- 统计力学 第2版 英文版 Morandi,G.等 著 2005年版
- 理解科学丛书 1小时科普 量子力学 朱梓忠 著 2018年版
- 热力学敏感流体空化基础理论与数值计算 邹丽,孙铁志,马相孚 著 2018年版